Abiotic dealkylation and hydrolysis of atrazine by birnessite.

نویسندگان

  • Jin Y Shin
  • Marcos A Cheney
چکیده

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and its degradation products are important contaminants of world water systems and have effects on aquatic life. These effects are modulated by the degradation of atrazine, which depends, in part, on its reactivity with soil minerals. We have studied the degradation reaction of atrazine on synthetic birnessite (delta-MnO2) in the aqueous phase using a batch reactor and a developed high-performance liquid chromatography method. The reaction was studied in the absence of light at 25 degrees C and between pH 2.3 to pH 8.3. The reaction rates increased with decreasing pH and increasing delta-MnO2 loading, and they did not follow simple first-order kinetics. The major products are hydroxylated and mono- and didealkylatrazine. Ammeline and cyanuric acid also were detected. The half-life (t 1/2) for the degradation of atrazine was approximately 16.8 d and independent of oxygen. Manganese(II) evolution was a minor product. The mechanism of dealkylation involved proton transfer to Mn(IV)-stabilized oxo and imido bonds, with no net oxidation and reduction. Oxidation was a secondary reaction. The proposed abiotic pathway for the transformation of atrazine on delta-MnO2 was identical to the reported biotic pathway. Thus, delta-MnO2, a common soil component, facilitated the efficient N-dealkylation and hydrolysis of the herbicide atrazine at 25 degrees C, possibly via a nonoxidative mechanisms. The N-dealkylation has been attributed strictly to a biological process in soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atrazine metabolism in resistant corn and sorghum.

The metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in the resistant species, corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.) was not the same. In corn, atrazine was metabolized via both the 2-hydroxylation and N-dealkylation pathways while sorghum metabolized atrazine via the N-dealkylation pathway. Atrazine metabolism in corn yielded the metabolites, 2-hydrox...

متن کامل

Atrazine metabolism and herbicidal selectivity.

Metabolism of the herbicide 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) was investigated in resistant corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.), intermediately susceptible pea (Pisum sativum L.), and highly susceptible wheat (Triticum vulgare Vill.) and soybean (Glycine max Merril.). This study revealed that 2 possible pathways for atrazine metabolism exist in high...

متن کامل

The effect of five forage species on transport and transformation of atrazine and isoxaflutole (balance) in lysimeter leachate.

A field lysimeter study with bare ground and five different ground covers was established to evaluate the effect of forage grasses on the fate and transport of two herbicides in leachate. The herbicides were atrazine (ATR; 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) and isoxaflutole [IXF; 5-cyclopropyl-4-(2-methylsulfonyl-4-trifluormethyl-benzoyl)isoxazole], which has the commercial ...

متن کامل

THE DEALKYLATION OF TERTIARY AMINES WITH THIOPHOSGENE AND 1-CHLOROETHYL CHLOROTHIONOFORMATE

Thiophosgene and 1-chloroethyl chlorothionoformate react readily with tertiary amines, and give the dialkylamine hydrochloride after hydrolysis of the initial product with water. Benzyl and allyl groups are cleaved in preference to methyl and other alkyl groups. The rection with the isoquinoline alkaloid narcotine occurs particularly easily.

متن کامل

Stimulated rhizodegradation of atrazine by selected plant species.

The efficacy of vegetative buffer strips (VBS) in removing herbicides deposited from surface runoff is related to the ability of plant species to promote rapid herbicide degradation. A growth chamber study was conducted to compare C-atrazine (ATR) degradation profiles in soil rhizospheres from different forage grasses and correlate ATR degradation rates and profiles with microbial activity usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental toxicology and chemistry

دوره 24 6  شماره 

صفحات  -

تاریخ انتشار 2005